1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
//! Contains impls of `ZcashSerialize`, `ZcashDeserialize` for all of the
//! transaction types, so that all of the serialization logic is in one place.

use byteorder::{LittleEndian, ReadBytesExt, WriteBytesExt};
use std::{
    convert::TryInto,
    io::{self, Read},
    sync::Arc,
};

use crate::notes;
use crate::proofs::ZkSnarkProof;
use crate::serialization::{
    ReadZcashExt, SerializationError, WriteZcashExt, ZcashDeserialize, ZcashSerialize,
};
use crate::types::Script;

use super::*;

const OVERWINTER_VERSION_GROUP_ID: u32 = 0x03C4_8270;
const SAPLING_VERSION_GROUP_ID: u32 = 0x892F_2085;

/// The coinbase data for a genesis block.
///
/// Zcash uses the same coinbase data for the Mainnet, Testnet, and Regtest
/// genesis blocks.
const GENESIS_COINBASE_DATA: [u8; 77] = [
    4, 255, 255, 7, 31, 1, 4, 69, 90, 99, 97, 115, 104, 48, 98, 57, 99, 52, 101, 101, 102, 56, 98,
    55, 99, 99, 52, 49, 55, 101, 101, 53, 48, 48, 49, 101, 51, 53, 48, 48, 57, 56, 52, 98, 54, 102,
    101, 97, 51, 53, 54, 56, 51, 97, 55, 99, 97, 99, 49, 52, 49, 97, 48, 52, 51, 99, 52, 50, 48,
    54, 52, 56, 51, 53, 100, 51, 52,
];

impl ZcashSerialize for OutPoint {
    fn zcash_serialize<W: io::Write>(&self, mut writer: W) -> Result<(), io::Error> {
        writer.write_all(&self.hash.0[..])?;
        writer.write_u32::<LittleEndian>(self.index)?;
        Ok(())
    }
}

impl ZcashDeserialize for OutPoint {
    fn zcash_deserialize<R: io::Read>(mut reader: R) -> Result<Self, SerializationError> {
        Ok(OutPoint {
            hash: TransactionHash(reader.read_32_bytes()?),
            index: reader.read_u32::<LittleEndian>()?,
        })
    }
}

// Coinbase inputs include block heights (BIP34). These are not encoded
// directly, but as a Bitcoin script that pushes the block height to the stack
// when executed. The script data is otherwise unused. Because we want to
// *parse* transactions into an internal representation where illegal states are
// unrepresentable, we need just enough parsing of Bitcoin scripts to parse the
// coinbase height and split off the rest of the (inert) coinbase data.

fn parse_coinbase_height(
    mut data: Vec<u8>,
) -> Result<(BlockHeight, CoinbaseData), SerializationError> {
    match (data.get(0), data.len()) {
        // Blocks 1 through 16 inclusive encode block height with OP_N opcodes.
        (Some(op_n @ 0x51..=0x60), len) if len >= 1 => Ok((
            BlockHeight((op_n - 0x50) as u32),
            CoinbaseData(data.split_off(1)),
        )),
        // Blocks 17 through 256 exclusive encode block height with the `0x01` opcode.
        (Some(0x01), len) if len >= 2 => {
            Ok((BlockHeight(data[1] as u32), CoinbaseData(data.split_off(2))))
        }
        // Blocks 256 through 65536 exclusive encode block height with the `0x02` opcode.
        (Some(0x02), len) if len >= 3 => Ok((
            BlockHeight(data[1] as u32 + ((data[2] as u32) << 8)),
            CoinbaseData(data.split_off(3)),
        )),
        // Blocks 65536 through 2**24 exclusive encode block height with the `0x03` opcode.
        (Some(0x03), len) if len >= 4 => Ok((
            BlockHeight(data[1] as u32 + ((data[2] as u32) << 8) + ((data[3] as u32) << 16)),
            CoinbaseData(data.split_off(4)),
        )),
        // The genesis block does not encode the block height by mistake; special case it.
        // The first five bytes are [4, 255, 255, 7, 31], the little-endian encoding of
        // 520_617_983.  This is lucky because it means we can special-case the genesis block
        // while remaining below the maximum `BlockHeight` of 500_000_000 forced by `LockTime`.
        // While it's unlikely this code will ever process a block height that high, this means
        // we don't need to maintain a cascade of different invariants for allowable `BlockHeight`s.
        (Some(0x04), _) if data[..] == GENESIS_COINBASE_DATA[..] => {
            Ok((BlockHeight(0), CoinbaseData(data)))
        }
        // As noted above, this is included for completeness.
        (Some(0x04), len) if len >= 5 => {
            let h = data[1] as u32
                + ((data[2] as u32) << 8)
                + ((data[3] as u32) << 16)
                + ((data[4] as u32) << 24);
            if h <= BlockHeight::MAX.0 {
                Ok((BlockHeight(h), CoinbaseData(data.split_off(5))))
            } else {
                Err(SerializationError::Parse("Invalid block height"))
            }
        }
        _ => Err(SerializationError::Parse(
            "Could not parse BIP34 height in coinbase data",
        )),
    }
}

fn coinbase_height_len(height: BlockHeight) -> usize {
    // We can't write this as a match statement on stable until exclusive range
    // guards are stabilized.
    if let 0 = height.0 {
        0
    } else if let _h @ 1..=16 = height.0 {
        1
    } else if let _h @ 17..=255 = height.0 {
        2
    } else if let _h @ 256..=65535 = height.0 {
        3
    } else if let _h @ 65536..=16_777_215 = height.0 {
        4
    } else if let _h @ 16_777_216..=BlockHeight::MAX_AS_U32 = height.0 {
        5
    } else {
        panic!("Invalid coinbase height");
    }
}

fn write_coinbase_height<W: io::Write>(height: BlockHeight, mut w: W) -> Result<(), io::Error> {
    // We can't write this as a match statement on stable until exclusive range
    // guards are stabilized.
    if let 0 = height.0 {
        // Genesis block does not include height.
    } else if let h @ 1..=16 = height.0 {
        w.write_u8(0x50 + (h as u8))?;
    } else if let h @ 17..=255 = height.0 {
        w.write_u8(0x01)?;
        w.write_u8(h as u8)?;
    } else if let h @ 256..=65535 = height.0 {
        w.write_u8(0x02)?;
        w.write_u16::<LittleEndian>(h as u16)?;
    } else if let h @ 65536..=16_777_215 = height.0 {
        w.write_u8(0x03)?;
        w.write_u8(h as u8)?;
        w.write_u8((h >> 8) as u8)?;
        w.write_u8((h >> 16) as u8)?;
    } else if let h @ 16_777_216..=BlockHeight::MAX_AS_U32 = height.0 {
        w.write_u8(0x04)?;
        w.write_u32::<LittleEndian>(h)?;
    } else {
        panic!("Invalid coinbase height");
    }
    Ok(())
}

impl ZcashSerialize for TransparentInput {
    fn zcash_serialize<W: io::Write>(&self, mut writer: W) -> Result<(), io::Error> {
        match self {
            TransparentInput::PrevOut {
                outpoint,
                script,
                sequence,
            } => {
                outpoint.zcash_serialize(&mut writer)?;
                script.zcash_serialize(&mut writer)?;
                writer.write_u32::<LittleEndian>(*sequence)?;
            }
            TransparentInput::Coinbase {
                height,
                data,
                sequence,
            } => {
                writer.write_all(&[0; 32][..])?;
                writer.write_u32::<LittleEndian>(0xffff_ffff)?;
                let height_len = coinbase_height_len(*height);
                let total_len = height_len + data.as_ref().len();
                writer.write_compactsize(total_len as u64)?;
                write_coinbase_height(*height, &mut writer)?;
                writer.write_all(&data.as_ref()[..])?;
                writer.write_u32::<LittleEndian>(*sequence)?;
            }
        }
        Ok(())
    }
}

impl ZcashDeserialize for TransparentInput {
    fn zcash_deserialize<R: io::Read>(mut reader: R) -> Result<Self, SerializationError> {
        // This inlines the OutPoint deserialization to peek at the hash value
        // and detect whether we have a coinbase input.
        let bytes = reader.read_32_bytes()?;
        if bytes == [0; 32] {
            if reader.read_u32::<LittleEndian>()? != 0xffff_ffff {
                return Err(SerializationError::Parse("wrong index in coinbase"));
            }
            let len = reader.read_compactsize()?;
            if len > 100 {
                return Err(SerializationError::Parse("coinbase has too much data"));
            }
            let mut data = Vec::with_capacity(len as usize);
            (&mut reader).take(len).read_to_end(&mut data)?;
            let (height, data) = parse_coinbase_height(data)?;
            let sequence = reader.read_u32::<LittleEndian>()?;
            Ok(TransparentInput::Coinbase {
                height,
                data,
                sequence,
            })
        } else {
            Ok(TransparentInput::PrevOut {
                outpoint: OutPoint {
                    hash: TransactionHash(bytes),
                    index: reader.read_u32::<LittleEndian>()?,
                },
                script: Script::zcash_deserialize(&mut reader)?,
                sequence: reader.read_u32::<LittleEndian>()?,
            })
        }
    }
}

impl ZcashSerialize for TransparentOutput {
    fn zcash_serialize<W: io::Write>(&self, mut writer: W) -> Result<(), io::Error> {
        writer.write_u64::<LittleEndian>(self.value.into())?;
        self.pk_script.zcash_serialize(&mut writer)?;
        Ok(())
    }
}

impl ZcashDeserialize for TransparentOutput {
    fn zcash_deserialize<R: io::Read>(mut reader: R) -> Result<Self, SerializationError> {
        Ok(TransparentOutput {
            value: reader.read_u64::<LittleEndian>()?.try_into()?,
            pk_script: Script::zcash_deserialize(&mut reader)?,
        })
    }
}

impl<P: ZkSnarkProof> ZcashSerialize for JoinSplit<P> {
    fn zcash_serialize<W: io::Write>(&self, mut writer: W) -> Result<(), io::Error> {
        writer.write_u64::<LittleEndian>(self.vpub_old.into())?;
        writer.write_u64::<LittleEndian>(self.vpub_new.into())?;
        writer.write_all(&self.anchor[..])?;
        self.nullifiers[0].zcash_serialize(&mut writer)?;
        self.nullifiers[1].zcash_serialize(&mut writer)?;
        writer.write_all(&self.commitments[0][..])?;
        writer.write_all(&self.commitments[1][..])?;
        writer.write_all(&self.ephemeral_key.as_bytes()[..])?;
        writer.write_all(&self.random_seed[..])?;
        self.vmacs[0].zcash_serialize(&mut writer)?;
        self.vmacs[1].zcash_serialize(&mut writer)?;
        self.zkproof.zcash_serialize(&mut writer)?;
        self.enc_ciphertexts[0].zcash_serialize(&mut writer)?;
        self.enc_ciphertexts[1].zcash_serialize(&mut writer)?;
        Ok(())
    }
}

impl<P: ZkSnarkProof> ZcashDeserialize for JoinSplit<P> {
    fn zcash_deserialize<R: io::Read>(mut reader: R) -> Result<Self, SerializationError> {
        Ok(JoinSplit::<P> {
            vpub_old: reader.read_u64::<LittleEndian>()?.try_into()?,
            vpub_new: reader.read_u64::<LittleEndian>()?.try_into()?,
            anchor: reader.read_32_bytes()?,
            nullifiers: [
                crate::nullifier::sprout::Nullifier::zcash_deserialize(&mut reader)?,
                crate::nullifier::sprout::Nullifier::zcash_deserialize(&mut reader)?,
            ],
            commitments: [reader.read_32_bytes()?, reader.read_32_bytes()?],
            ephemeral_key: x25519_dalek::PublicKey::from(reader.read_32_bytes()?),
            random_seed: reader.read_32_bytes()?,
            vmacs: [
                crate::types::MAC::zcash_deserialize(&mut reader)?,
                crate::types::MAC::zcash_deserialize(&mut reader)?,
            ],
            zkproof: P::zcash_deserialize(&mut reader)?,
            enc_ciphertexts: [
                notes::sprout::EncryptedCiphertext::zcash_deserialize(&mut reader)?,
                notes::sprout::EncryptedCiphertext::zcash_deserialize(&mut reader)?,
            ],
        })
    }
}

impl<P: ZkSnarkProof> ZcashSerialize for JoinSplitData<P> {
    fn zcash_serialize<W: io::Write>(&self, mut writer: W) -> Result<(), io::Error> {
        writer.write_compactsize(self.joinsplits().count() as u64)?;
        for joinsplit in self.joinsplits() {
            joinsplit.zcash_serialize(&mut writer)?;
        }
        writer.write_all(&<[u8; 32]>::from(self.pub_key)[..])?;
        writer.write_all(&<[u8; 64]>::from(self.sig)[..])?;
        Ok(())
    }
}

impl<P: ZkSnarkProof> ZcashDeserialize for Option<JoinSplitData<P>> {
    fn zcash_deserialize<R: io::Read>(mut reader: R) -> Result<Self, SerializationError> {
        let num_joinsplits = reader.read_compactsize()?;
        match num_joinsplits {
            0 => Ok(None),
            n => {
                let first = JoinSplit::zcash_deserialize(&mut reader)?;
                let mut rest = Vec::with_capacity((n - 1) as usize);
                for _ in 0..(n - 1) {
                    rest.push(JoinSplit::zcash_deserialize(&mut reader)?);
                }
                let pub_key = reader.read_32_bytes()?.into();
                let sig = reader.read_64_bytes()?.into();
                Ok(Some(JoinSplitData {
                    first,
                    rest,
                    pub_key,
                    sig,
                }))
            }
        }
    }
}

impl ZcashSerialize for Spend {
    fn zcash_serialize<W: io::Write>(&self, mut writer: W) -> Result<(), io::Error> {
        writer.write_all(&self.cv[..])?;
        writer.write_all(&self.anchor.0[..])?;
        self.nullifier.zcash_serialize(&mut writer)?;
        writer.write_all(&<[u8; 32]>::from(self.rk)[..])?;
        self.zkproof.zcash_serialize(&mut writer)?;
        writer.write_all(&<[u8; 64]>::from(self.spend_auth_sig)[..])?;
        Ok(())
    }
}

impl ZcashDeserialize for Spend {
    fn zcash_deserialize<R: io::Read>(mut reader: R) -> Result<Self, SerializationError> {
        use crate::note_commitment_tree::SaplingNoteTreeRootHash;
        Ok(Spend {
            cv: reader.read_32_bytes()?,
            anchor: SaplingNoteTreeRootHash(reader.read_32_bytes()?),
            nullifier: crate::nullifier::sapling::Nullifier::zcash_deserialize(&mut reader)?,
            rk: reader.read_32_bytes()?.into(),
            zkproof: Groth16Proof::zcash_deserialize(&mut reader)?,
            spend_auth_sig: reader.read_64_bytes()?.into(),
        })
    }
}

impl ZcashSerialize for Output {
    fn zcash_serialize<W: io::Write>(&self, mut writer: W) -> Result<(), io::Error> {
        writer.write_all(&self.cv[..])?;
        writer.write_all(&self.cmu[..])?;
        writer.write_all(&self.ephemeral_key.to_bytes())?;
        self.enc_ciphertext.zcash_serialize(&mut writer)?;
        self.out_ciphertext.zcash_serialize(&mut writer)?;
        self.zkproof.zcash_serialize(&mut writer)?;
        Ok(())
    }
}

impl ZcashDeserialize for Output {
    fn zcash_deserialize<R: io::Read>(mut reader: R) -> Result<Self, SerializationError> {
        Ok(Output {
            cv: reader.read_32_bytes()?,
            cmu: reader.read_32_bytes()?,
            ephemeral_key: jubjub::AffinePoint::from_bytes(reader.read_32_bytes()?).unwrap(),
            enc_ciphertext: notes::sapling::EncryptedCiphertext::zcash_deserialize(&mut reader)?,
            out_ciphertext: notes::sapling::OutCiphertext::zcash_deserialize(&mut reader)?,
            zkproof: Groth16Proof::zcash_deserialize(&mut reader)?,
        })
    }
}

impl ZcashSerialize for Transaction {
    fn zcash_serialize<W: io::Write>(&self, mut writer: W) -> Result<(), io::Error> {
        // Post-Sapling, transaction size is limited to MAX_BLOCK_BYTES.
        // (Strictly, the maximum transaction size is about 1.5 kB less,
        // because blocks also include a block header.)
        //
        // Currently, all transaction structs are parsed as part of a
        // block. So we don't need to check transaction size here, until
        // we start parsing mempool transactions, or generating our own
        // transactions (see #483).
        //
        // Since we checkpoint on Sapling activation, we won't ever need
        // to check the smaller pre-Sapling transaction size limit.
        match self {
            Transaction::V1 {
                inputs,
                outputs,
                lock_time,
            } => {
                writer.write_u32::<LittleEndian>(1)?;
                inputs.zcash_serialize(&mut writer)?;
                outputs.zcash_serialize(&mut writer)?;
                lock_time.zcash_serialize(&mut writer)?;
            }
            Transaction::V2 {
                inputs,
                outputs,
                lock_time,
                joinsplit_data,
            } => {
                writer.write_u32::<LittleEndian>(2)?;
                inputs.zcash_serialize(&mut writer)?;
                outputs.zcash_serialize(&mut writer)?;
                lock_time.zcash_serialize(&mut writer)?;
                match joinsplit_data {
                    // Write 0 for nJoinSplits to signal no JoinSplitData.
                    None => writer.write_compactsize(0)?,
                    Some(jsd) => jsd.zcash_serialize(&mut writer)?,
                }
            }
            Transaction::V3 {
                inputs,
                outputs,
                lock_time,
                expiry_height,
                joinsplit_data,
            } => {
                // Write version 3 and set the fOverwintered bit.
                writer.write_u32::<LittleEndian>(3 | (1 << 31))?;
                writer.write_u32::<LittleEndian>(OVERWINTER_VERSION_GROUP_ID)?;
                inputs.zcash_serialize(&mut writer)?;
                outputs.zcash_serialize(&mut writer)?;
                lock_time.zcash_serialize(&mut writer)?;
                writer.write_u32::<LittleEndian>(expiry_height.0)?;
                match joinsplit_data {
                    // Write 0 for nJoinSplits to signal no JoinSplitData.
                    None => writer.write_compactsize(0)?,
                    Some(jsd) => jsd.zcash_serialize(&mut writer)?,
                }
            }
            Transaction::V4 {
                inputs,
                outputs,
                lock_time,
                expiry_height,
                value_balance,
                shielded_data,
                joinsplit_data,
            } => {
                // Write version 4 and set the fOverwintered bit.
                writer.write_u32::<LittleEndian>(4 | (1 << 31))?;
                writer.write_u32::<LittleEndian>(SAPLING_VERSION_GROUP_ID)?;
                inputs.zcash_serialize(&mut writer)?;
                outputs.zcash_serialize(&mut writer)?;
                lock_time.zcash_serialize(&mut writer)?;
                writer.write_u32::<LittleEndian>(expiry_height.0)?;
                writer.write_i64::<LittleEndian>((*value_balance).into())?;

                // The previous match arms serialize in one go, because the
                // internal structure happens to nicely line up with the
                // serialized structure. However, this is not possible for
                // version 4 transactions, as the binding_sig for the
                // ShieldedData is placed at the end of the transaction. So
                // instead we have to interleave serialization of the
                // ShieldedData and the JoinSplitData.

                match shielded_data {
                    None => {
                        // Signal no shielded spends and no shielded outputs.
                        writer.write_compactsize(0)?;
                        writer.write_compactsize(0)?;
                    }
                    Some(shielded_data) => {
                        writer.write_compactsize(shielded_data.spends().count() as u64)?;
                        for spend in shielded_data.spends() {
                            spend.zcash_serialize(&mut writer)?;
                        }
                        writer.write_compactsize(shielded_data.outputs().count() as u64)?;
                        for output in shielded_data.outputs() {
                            output.zcash_serialize(&mut writer)?;
                        }
                    }
                }

                match joinsplit_data {
                    None => writer.write_compactsize(0)?,
                    Some(jsd) => jsd.zcash_serialize(&mut writer)?,
                }

                match shielded_data {
                    Some(sd) => writer.write_all(&<[u8; 64]>::from(sd.binding_sig)[..])?,
                    None => {}
                }
            }
        }
        Ok(())
    }
}

impl ZcashDeserialize for Transaction {
    fn zcash_deserialize<R: io::Read>(mut reader: R) -> Result<Self, SerializationError> {
        let (version, overwintered) = {
            const LOW_31_BITS: u32 = (1 << 31) - 1;
            let header = reader.read_u32::<LittleEndian>()?;
            (header & LOW_31_BITS, header >> 31 != 0)
        };

        // The overwintered flag MUST NOT be set for version 1 and 2 transactions.
        match (version, overwintered) {
            (1, false) => Ok(Transaction::V1 {
                inputs: Vec::zcash_deserialize(&mut reader)?,
                outputs: Vec::zcash_deserialize(&mut reader)?,
                lock_time: LockTime::zcash_deserialize(&mut reader)?,
            }),
            (2, false) => {
                // Version 2 transactions use Sprout-on-BCTV14.
                type OptV2JSD = Option<JoinSplitData<Bctv14Proof>>;
                Ok(Transaction::V2 {
                    inputs: Vec::zcash_deserialize(&mut reader)?,
                    outputs: Vec::zcash_deserialize(&mut reader)?,
                    lock_time: LockTime::zcash_deserialize(&mut reader)?,
                    joinsplit_data: OptV2JSD::zcash_deserialize(&mut reader)?,
                })
            }
            (3, true) => {
                let id = reader.read_u32::<LittleEndian>()?;
                if id != OVERWINTER_VERSION_GROUP_ID {
                    return Err(SerializationError::Parse(
                        "expected OVERWINTER_VERSION_GROUP_ID",
                    ));
                }
                // Version 3 transactions use Sprout-on-BCTV14.
                type OptV3JSD = Option<JoinSplitData<Bctv14Proof>>;
                Ok(Transaction::V3 {
                    inputs: Vec::zcash_deserialize(&mut reader)?,
                    outputs: Vec::zcash_deserialize(&mut reader)?,
                    lock_time: LockTime::zcash_deserialize(&mut reader)?,
                    expiry_height: BlockHeight(reader.read_u32::<LittleEndian>()?),
                    joinsplit_data: OptV3JSD::zcash_deserialize(&mut reader)?,
                })
            }
            (4, true) => {
                let id = reader.read_u32::<LittleEndian>()?;
                if id != SAPLING_VERSION_GROUP_ID {
                    return Err(SerializationError::Parse(
                        "expected SAPLING_VERSION_GROUP_ID",
                    ));
                }
                // Version 4 transactions use Sprout-on-Groth16.
                type OptV4JSD = Option<JoinSplitData<Groth16Proof>>;

                // The previous match arms deserialize in one go, because the
                // internal structure happens to nicely line up with the
                // serialized structure. However, this is not possible for
                // version 4 transactions, as the binding_sig for the
                // ShieldedData is placed at the end of the transaction. So
                // instead we have to pull the component parts out manually and
                // then assemble them.

                let inputs = Vec::zcash_deserialize(&mut reader)?;
                let outputs = Vec::zcash_deserialize(&mut reader)?;
                let lock_time = LockTime::zcash_deserialize(&mut reader)?;
                let expiry_height = BlockHeight(reader.read_u32::<LittleEndian>()?);
                let value_balance = reader.read_i64::<LittleEndian>()?.try_into()?;
                let mut shielded_spends = Vec::zcash_deserialize(&mut reader)?;
                let mut shielded_outputs = Vec::zcash_deserialize(&mut reader)?;
                let joinsplit_data = OptV4JSD::zcash_deserialize(&mut reader)?;

                use futures::future::Either::*;
                let shielded_data = if !shielded_spends.is_empty() {
                    Some(ShieldedData {
                        first: Left(shielded_spends.remove(0)),
                        rest_spends: shielded_spends,
                        rest_outputs: shielded_outputs,
                        binding_sig: reader.read_64_bytes()?.into(),
                    })
                } else if !shielded_outputs.is_empty() {
                    Some(ShieldedData {
                        first: Right(shielded_outputs.remove(0)),
                        rest_spends: shielded_spends,
                        rest_outputs: shielded_outputs,
                        binding_sig: reader.read_64_bytes()?.into(),
                    })
                } else {
                    None
                };

                Ok(Transaction::V4 {
                    inputs,
                    outputs,
                    lock_time,
                    expiry_height,
                    value_balance,
                    shielded_data,
                    joinsplit_data,
                })
            }
            (_, _) => Err(SerializationError::Parse("bad tx header")),
        }
    }
}

impl<T> ZcashDeserialize for Arc<T>
where
    T: ZcashDeserialize,
{
    fn zcash_deserialize<R: io::Read>(reader: R) -> Result<Self, SerializationError> {
        Ok(Arc::new(T::zcash_deserialize(reader)?))
    }
}

impl<T> ZcashSerialize for Arc<T>
where
    T: ZcashSerialize,
{
    fn zcash_serialize<W: io::Write>(&self, writer: W) -> Result<(), io::Error> {
        T::zcash_serialize(self, writer)
    }
}