1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
//! Note Commitment Trees.
//!
//! A note commitment tree is an incremental Merkle tree of fixed depth
//! used to store note commitments that JoinSplit transfers or Spend
//! transfers produce. Just as the unspent transaction output set (UTXO
//! set) used in Bitcoin, it is used to express the existence of value and
//! the capability to spend it. However, unlike the UTXO set, it is not
//! the job of this tree to protect against double-spending, as it is
//! append-only.
//!
//! A root of a note commitment tree is associated with each treestate.
use std::{
fmt,
hash::{Hash, Hasher},
io,
ops::Deref,
sync::Arc,
};
use bitvec::prelude::*;
use incrementalmerkletree::{
bridgetree::{self, Leaf},
Frontier,
};
use lazy_static::lazy_static;
use thiserror::Error;
use zcash_encoding::{Optional, Vector};
use zcash_primitives::merkle_tree::{self, Hashable};
use super::commitment::pedersen_hashes::pedersen_hash;
use crate::serialization::{
serde_helpers, ReadZcashExt, SerializationError, ZcashDeserialize, ZcashSerialize,
};
/// The type that is used to update the note commitment tree.
///
/// Unfortunately, this is not the same as `sapling::NoteCommitment`.
pub type NoteCommitmentUpdate = jubjub::Fq;
pub(super) const MERKLE_DEPTH: u8 = 32;
/// MerkleCRH^Sapling Hash Function
///
/// Used to hash incremental Merkle tree hash values for Sapling.
///
/// MerkleCRH^Sapling(layer, left, right) := PedersenHash("Zcash_PH", l || left || right)
/// where l = I2LEBSP_6(MerkleDepth^Sapling − 1 − layer) and
/// left, right, and the output are all technically 255 bits (l_MerkleSapling), not 256.
///
/// <https://zips.z.cash/protocol/protocol.pdf#merklecrh>
fn merkle_crh_sapling(layer: u8, left: [u8; 32], right: [u8; 32]) -> [u8; 32] {
let mut s = bitvec![u8, Lsb0;];
// Prefix: l = I2LEBSP_6(MerkleDepth^Sapling − 1 − layer)
let l = MERKLE_DEPTH - 1 - layer;
s.extend_from_bitslice(&BitSlice::<_, Lsb0>::from_element(&l)[0..6]);
s.extend_from_bitslice(&BitArray::<_, Lsb0>::from(left)[0..255]);
s.extend_from_bitslice(&BitArray::<_, Lsb0>::from(right)[0..255]);
pedersen_hash(*b"Zcash_PH", &s).to_bytes()
}
lazy_static! {
/// List of "empty" Sapling note commitment nodes, one for each layer.
///
/// The list is indexed by the layer number (0: root; MERKLE_DEPTH: leaf).
///
/// <https://zips.z.cash/protocol/protocol.pdf#constants>
pub(super) static ref EMPTY_ROOTS: Vec<[u8; 32]> = {
// The empty leaf node. This is layer 32.
let mut v = vec![NoteCommitmentTree::uncommitted()];
// Starting with layer 31 (the first internal layer, after the leaves),
// generate the empty roots up to layer 0, the root.
for layer in (0..MERKLE_DEPTH).rev() {
// The vector is generated from the end, pushing new nodes to its beginning.
// For this reason, the layer below is v[0].
let next = merkle_crh_sapling(layer, v[0], v[0]);
v.insert(0, next);
}
v
};
}
/// The index of a note's commitment at the leafmost layer of its Note
/// Commitment Tree.
///
/// <https://zips.z.cash/protocol/protocol.pdf#merkletree>
pub struct Position(pub(crate) u64);
/// Sapling note commitment tree root node hash.
///
/// The root hash in LEBS2OSP256(rt) encoding of the Sapling note
/// commitment tree corresponding to the final Sapling treestate of
/// this block. A root of a note commitment tree is associated with
/// each treestate.
#[derive(Clone, Copy, Default, Eq, Serialize, Deserialize)]
pub struct Root(#[serde(with = "serde_helpers::Fq")] pub(crate) jubjub::Base);
impl fmt::Debug for Root {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_tuple("Root")
.field(&hex::encode(self.0.to_bytes()))
.finish()
}
}
impl From<Root> for [u8; 32] {
fn from(root: Root) -> Self {
root.0.to_bytes()
}
}
impl From<&Root> for [u8; 32] {
fn from(root: &Root) -> Self {
(*root).into()
}
}
impl PartialEq for Root {
fn eq(&self, other: &Self) -> bool {
self.0 == other.0
}
}
impl Hash for Root {
fn hash<H: Hasher>(&self, state: &mut H) {
self.0.to_bytes().hash(state)
}
}
impl TryFrom<[u8; 32]> for Root {
type Error = SerializationError;
fn try_from(bytes: [u8; 32]) -> Result<Self, Self::Error> {
let possible_point = jubjub::Base::from_bytes(&bytes);
if possible_point.is_some().into() {
Ok(Self(possible_point.unwrap()))
} else {
Err(SerializationError::Parse(
"Invalid jubjub::Base value for Sapling note commitment tree root",
))
}
}
}
impl ZcashSerialize for Root {
fn zcash_serialize<W: io::Write>(&self, mut writer: W) -> Result<(), io::Error> {
writer.write_all(&<[u8; 32]>::from(*self)[..])?;
Ok(())
}
}
impl ZcashDeserialize for Root {
fn zcash_deserialize<R: io::Read>(mut reader: R) -> Result<Self, SerializationError> {
Self::try_from(reader.read_32_bytes()?)
}
}
/// A node of the Sapling Incremental Note Commitment Tree.
///
/// Note that it's handled as a byte buffer and not a point coordinate (jubjub::Fq)
/// because that's how the spec handles the MerkleCRH^Sapling function inputs and outputs.
#[derive(Copy, Clone, Eq, PartialEq)]
struct Node([u8; 32]);
impl fmt::Debug for Node {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_tuple("Node").field(&hex::encode(self.0)).finish()
}
}
/// Required to convert [`NoteCommitmentTree`] into [`SerializedTree`].
///
/// Zebra stores Sapling note commitment trees as [`Frontier`][1]s while the
/// [`z_gettreestate`][2] RPC requires [`CommitmentTree`][3]s. Implementing
/// [`merkle_tree::Hashable`] for [`Node`]s allows the conversion.
///
/// [1]: bridgetree::Frontier
/// [2]: https://zcash.github.io/rpc/z_gettreestate.html
/// [3]: merkle_tree::CommitmentTree
impl merkle_tree::Hashable for Node {
fn read<R: io::Read>(mut reader: R) -> io::Result<Self> {
let mut node = [0u8; 32];
reader.read_exact(&mut node)?;
Ok(Self(node))
}
fn write<W: io::Write>(&self, mut writer: W) -> io::Result<()> {
writer.write_all(self.0.as_ref())
}
fn combine(level: usize, a: &Self, b: &Self) -> Self {
let level = u8::try_from(level).expect("level must fit into u8");
let layer = MERKLE_DEPTH - 1 - level;
Self(merkle_crh_sapling(layer, a.0, b.0))
}
fn blank() -> Self {
Self(NoteCommitmentTree::uncommitted())
}
fn empty_root(level: usize) -> Self {
let layer_below = usize::from(MERKLE_DEPTH) - level;
Self(EMPTY_ROOTS[layer_below])
}
}
impl incrementalmerkletree::Hashable for Node {
fn empty_leaf() -> Self {
Self(NoteCommitmentTree::uncommitted())
}
/// Combine two nodes to generate a new node in the given level.
/// Level 0 is the layer above the leaves (layer 31).
/// Level 31 is the root (layer 0).
fn combine(level: incrementalmerkletree::Altitude, a: &Self, b: &Self) -> Self {
let layer = MERKLE_DEPTH - 1 - u8::from(level);
Self(merkle_crh_sapling(layer, a.0, b.0))
}
/// Return the node for the level below the given level. (A quirk of the API)
fn empty_root(level: incrementalmerkletree::Altitude) -> Self {
let layer_below = usize::from(MERKLE_DEPTH) - usize::from(level);
Self(EMPTY_ROOTS[layer_below])
}
}
impl From<jubjub::Fq> for Node {
fn from(x: jubjub::Fq) -> Self {
Node(x.into())
}
}
impl serde::Serialize for Node {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: serde::Serializer,
{
self.0.serialize(serializer)
}
}
impl<'de> serde::Deserialize<'de> for Node {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: serde::Deserializer<'de>,
{
let bytes = <[u8; 32]>::deserialize(deserializer)?;
Option::<jubjub::Fq>::from(jubjub::Fq::from_bytes(&bytes))
.map(Node::from)
.ok_or_else(|| serde::de::Error::custom("invalid JubJub field element"))
}
}
#[derive(Error, Copy, Clone, Debug, Eq, PartialEq, Hash)]
#[allow(missing_docs)]
pub enum NoteCommitmentTreeError {
#[error("The note commitment tree is full")]
FullTree,
}
/// Sapling Incremental Note Commitment Tree.
#[derive(Debug, Serialize, Deserialize)]
pub struct NoteCommitmentTree {
/// The tree represented as a [`Frontier`](bridgetree::Frontier).
///
/// A Frontier is a subset of the tree that allows to fully specify it.
/// It consists of nodes along the rightmost (newer) branch of the tree that
/// has non-empty nodes. Upper (near root) empty nodes of the branch are not
/// stored.
///
/// # Consensus
///
/// > [Sapling onward] A block MUST NOT add Sapling note commitments that
/// > would result in the Sapling note commitment tree exceeding its capacity
/// > of 2^(MerkleDepth^Sapling) leaf nodes.
///
/// <https://zips.z.cash/protocol/protocol.pdf#merkletree>
///
/// Note: MerkleDepth^Sapling = MERKLE_DEPTH = 32.
inner: bridgetree::Frontier<Node, MERKLE_DEPTH>,
/// A cached root of the tree.
///
/// Every time the root is computed by [`Self::root`] it is cached here, and
/// the cached value will be returned by [`Self::root`] until the tree is
/// changed by [`Self::append`]. This greatly increases performance because
/// it avoids recomputing the root when the tree does not change between
/// blocks. In the finalized state, the tree is read from disk for every
/// block processed, which would also require recomputing the root even if
/// it has not changed (note that the cached root is serialized with the
/// tree). This is particularly important since we decided to instantiate
/// the trees from the genesis block, for simplicity.
///
/// We use a [`RwLock`](std::sync::RwLock) for this cache, because it is only written once per
/// tree update. Each tree has its own cached root, a new lock is created
/// for each clone.
cached_root: std::sync::RwLock<Option<Root>>,
}
impl NoteCommitmentTree {
/// Adds a note commitment u-coordinate to the tree.
///
/// The leaves of the tree are actually a base field element, the
/// u-coordinate of the commitment, the data that is actually stored on the
/// chain and input into the proof.
///
/// Returns an error if the tree is full.
#[allow(clippy::unwrap_in_result)]
pub fn append(&mut self, cm_u: NoteCommitmentUpdate) -> Result<(), NoteCommitmentTreeError> {
if self.inner.append(&cm_u.into()) {
// Invalidate cached root
let cached_root = self
.cached_root
.get_mut()
.expect("a thread that previously held exclusive lock access panicked");
*cached_root = None;
Ok(())
} else {
Err(NoteCommitmentTreeError::FullTree)
}
}
/// Returns the current root of the tree, used as an anchor in Sapling
/// shielded transactions.
pub fn root(&self) -> Root {
if let Some(root) = self
.cached_root
.read()
.expect("a thread that previously held exclusive lock access panicked")
.deref()
{
// Return cached root.
return *root;
}
// Get exclusive access, compute the root, and cache it.
let mut write_root = self
.cached_root
.write()
.expect("a thread that previously held exclusive lock access panicked");
let read_root = write_root.as_ref().cloned();
match read_root {
// Another thread got write access first, return cached root.
Some(root) => root,
None => {
// Compute root and cache it.
let root = Root::try_from(self.inner.root().0).unwrap();
*write_root = Some(root);
root
}
}
}
/// Gets the Jubjub-based Pedersen hash of root node of this merkle tree of
/// note commitments.
pub fn hash(&self) -> [u8; 32] {
self.root().into()
}
/// An as-yet unused Sapling note commitment tree leaf node.
///
/// Distinct for Sapling, a distinguished hash value of:
///
/// Uncommitted^Sapling = I2LEBSP_l_MerkleSapling(1)
pub fn uncommitted() -> [u8; 32] {
jubjub::Fq::one().to_bytes()
}
/// Counts of note commitments added to the tree.
///
/// For Sapling, the tree is capped at 2^32.
pub fn count(&self) -> u64 {
self.inner.position().map_or(0, |pos| u64::from(pos) + 1)
}
}
impl Clone for NoteCommitmentTree {
/// Clones the inner tree, and creates a new [`RwLock`](std::sync::RwLock)
/// with the cloned root data.
fn clone(&self) -> Self {
let cached_root = *self
.cached_root
.read()
.expect("a thread that previously held exclusive lock access panicked");
Self {
inner: self.inner.clone(),
cached_root: std::sync::RwLock::new(cached_root),
}
}
}
impl Default for NoteCommitmentTree {
fn default() -> Self {
Self {
inner: bridgetree::Frontier::empty(),
cached_root: Default::default(),
}
}
}
impl Eq for NoteCommitmentTree {}
impl PartialEq for NoteCommitmentTree {
fn eq(&self, other: &Self) -> bool {
self.hash() == other.hash()
}
}
impl From<Vec<jubjub::Fq>> for NoteCommitmentTree {
/// Computes the tree from a whole bunch of note commitments at once.
fn from(values: Vec<jubjub::Fq>) -> Self {
let mut tree = Self::default();
if values.is_empty() {
return tree;
}
for cm_u in values {
let _ = tree.append(cm_u);
}
tree
}
}
/// A serialized Sapling note commitment tree.
///
/// The format of the serialized data is compatible with
/// [`CommitmentTree`](merkle_tree::CommitmentTree) from `librustzcash` and not
/// with [`Frontier`](bridgetree::Frontier) from the crate
/// [`incrementalmerkletree`]. Zebra follows the former format in order to stay
/// consistent with `zcashd` in RPCs. Note that [`NoteCommitmentTree`] itself is
/// represented as [`Frontier`](bridgetree::Frontier).
///
/// The formats are semantically equivalent. The primary difference between them
/// is that in [`Frontier`](bridgetree::Frontier), the vector of parents is
/// dense (we know where the gaps are from the position of the leaf in the
/// overall tree); whereas in [`CommitmentTree`](merkle_tree::CommitmentTree),
/// the vector of parent hashes is sparse with [`None`] values in the gaps.
///
/// The sparse format, used in this implementation, allows representing invalid
/// commitment trees while the dense format allows representing only valid
/// commitment trees.
///
/// It is likely that the dense format will be used in future RPCs, in which
/// case the current implementation will have to change and use the format
/// compatible with [`Frontier`](bridgetree::Frontier) instead.
#[derive(Clone, Debug, Eq, PartialEq, serde::Serialize)]
pub struct SerializedTree(Vec<u8>);
impl From<&NoteCommitmentTree> for SerializedTree {
fn from(tree: &NoteCommitmentTree) -> Self {
let mut serialized_tree = vec![];
// Convert the note commitment tree represented as a frontier into the
// format compatible with `zcashd`.
//
// `librustzcash` has a function [`from_frontier()`][1], which returns a
// commitment tree in the sparse format. However, the returned tree
// always contains [`MERKLE_DEPTH`] parent nodes, even though some
// trailing parents are empty. Such trees are incompatible with Sapling
// commitment trees returned by `zcashd` because `zcashd` returns
// Sapling commitment trees without empty trailing parents. For this
// reason, Zebra implements its own conversion between the dense and
// sparse formats for Sapling.
//
// [1]: <https://github.com/zcash/librustzcash/blob/a63a37a/zcash_primitives/src/merkle_tree.rs#L125>
if let Some(frontier) = tree.inner.value() {
let (left_leaf, right_leaf) = match frontier.leaf() {
Leaf::Left(left_value) => (Some(left_value), None),
Leaf::Right(left_value, right_value) => (Some(left_value), Some(right_value)),
};
// Ommers are siblings of parent nodes along the branch from the
// most recent leaf to the root of the tree.
let mut ommers_iter = frontier.ommers().iter();
// Set bits in the binary representation of the position indicate
// the presence of ommers along the branch from the most recent leaf
// node to the root of the tree, except for the lowest bit.
let mut position: usize = frontier.position().into();
// The lowest bit does not indicate the presence of any ommers. We
// clear it so that we can test if there are no set bits left in
// [`position`].
position &= !1;
// Run through the bits of [`position`], and push an ommer for each
// set bit, or `None` otherwise. In contrast to the 'zcashd' code
// linked above, we want to skip any trailing `None` parents at the
// top of the tree. To do that, we clear the bits as we go through
// them, and break early if the remaining bits are all zero (i.e.
// [`position`] is zero).
let mut parents = vec![];
for i in 1..MERKLE_DEPTH {
// Test each bit in [`position`] individually. Don't test the
// lowest bit since it doesn't actually indicate the position of
// any ommer.
let bit_mask = 1 << i;
if position & bit_mask == 0 {
parents.push(None);
} else {
parents.push(ommers_iter.next());
// Clear the set bit so that we can test if there are no set
// bits left.
position &= !bit_mask;
// If there are no set bits left, exit early so that there
// are no empty trailing parent nodes in the serialized
// tree.
if position == 0 {
break;
}
}
}
// Serialize the converted note commitment tree.
Optional::write(&mut serialized_tree, left_leaf, |tree, leaf| {
leaf.write(tree)
})
.expect("A leaf in a note commitment tree should be serializable");
Optional::write(&mut serialized_tree, right_leaf, |tree, leaf| {
leaf.write(tree)
})
.expect("A leaf in a note commitment tree should be serializable");
Vector::write(&mut serialized_tree, &parents, |tree, parent| {
Optional::write(tree, *parent, |tree, parent| parent.write(tree))
})
.expect("Parent nodes in a note commitment tree should be serializable");
}
Self(serialized_tree)
}
}
impl From<Option<Arc<NoteCommitmentTree>>> for SerializedTree {
fn from(maybe_tree: Option<Arc<NoteCommitmentTree>>) -> Self {
match maybe_tree {
Some(tree) => tree.as_ref().into(),
None => Self(vec![]),
}
}
}
impl AsRef<[u8]> for SerializedTree {
fn as_ref(&self) -> &[u8] {
&self.0
}
}